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Abstract

A novel method for kernel function of support vector machine is presented based on the information geometry theory.

The kernel function is modified using a conformal mapping to make the kernel data-dependent so as to increase the ability of predicting high

noise data of the method. Numerical simulations demonstrate the effectiveness of the method. Simulated results on the prediction of the

stock price show that the improved approach possesses better forecasting precision and ability of generalization than the conventional mod-

els.
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Artificial neural networks have received increas-
ing attention in financial time series forecasting!!'2).
Like most application fields using neural networks,
most of the popular neural network models applied to
time series forecasting is the feedforward neural net-
work with error back-propagation (BP) algorithm
due to its simple architecture yet powerful problem-
solving ability. In recent years, a novel neural net-
work algorithm, called support vector machine
(SVM), has been introduced by Vapnik et al.® to
solve machine learning tasks such as regression, pat-
tern recognition and density estimation. The ap-
proach is systematic and properly motivated by statis-
tical learning theory. Unlike most traditional neural
network models which implement the empirical risk
munimization principle, the SVM implements the
structural risk minimization principle which seeks to
minimize the training error and a confidence interval
term. This eventually results in a good performance
of generalization. Because of its good properties such
as automatic selection on models ( parameters and lo-
cations of basis functions), trained with quadratic
programming (globally optimal solution existed), and
good learning ability for small samples, the SVM has
received increasing attention in recent years[4~6].
Moreover, the SVM has been successfully applied to
the support vector regression (SVR), especially, for
modeling nonlinear financial time series, such as pre-

diction on the stock pricel” ™.

An improved method of SVM is proposed based
on the modification of the kernel function in this pa-
per. A conformal mapping is used to make the kernel
data-dependent. Examination on the forecasting pre-
cision for the stock prices shows that the proposed
method is obviously superior to the traditional SVM
in the precision of prediction.

This paper consists of four main sections. Sec-
tion 1 provides a brief introduction to the SVR and its
kernel functions. Section 2 deals with the new data-
dependent kernel SVR. The experimental study on
stock price prediction is performed in Section 3. The
conclusion drawn from this study forms the last
section.

1 SVR and its kernel function

Let {(x;,d;){ (i =1, -, n) be a given set of
data points where x; is the i th input vector and d; the
corresponding desired output. The output of the neu-
ral network is

y = f(x) = (w,®(x)) + b, (1)
where w is the weight vector, & the bias and ®(x)
the nonlinear mapping from the input space S to the
high dimensional feature space F which is the only
hidden space in the SVR. (-, *) represents the inner
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product.

The commonly used e-insensitive loss function
introduced by Vapnik is
Ls(di’yi)z |d1'_f(xi)| — €, |di"f(x{)|>€,
0, elsewhere.
(2)
In order to train w and b, the following func-
tional is minimized

R(c,e) = el (diwy) + 5 w2 (3)

where ¢ is the regularized constant determining the
trade-off between the empirical error and the regular-
ization term.

After the introduction of positive slack variables
and Lagrange multipliers, Eq. (3) is equivalent to a
standard quadratic programming ( QP) problem and
can be solved with QP. When Eq. (3) is optimized,

Eq. (1) can be rewritten as!”]

flx) = Z(ai ~a Yk(x,x) +b, (4)

where a; and a, are two kinds of Lagrange multipli-
ers which are denoted using ag* ), in which if there

. . . * .
exists a * in the () it represents a, , otherwise a;.

E(x,x") is a kernel function and satisfies

k(x,x") = (@(x),d(x")). (5)

From Eq. (4), in order to calculate f(x), we
(*)

need only to calculate Lagrange multipliers a; ° and
kernel function & (x, x”) instead of calculating the
values of the weight vectors w and the nonlinear

mapping ®(x).

It should be pointed out that not all functions can
be taken as kernel functions in the SVR. It has been
proved theoretically that the kernel functions satisfy-

ing the following conditions can be the kernel func-
tions of the SVR.

Theorem 1. (Mercer’s theorem)! %’ .

Let A be a compact subset of RY, h(x) €
L,(A), and T a positive integral operator satisfying

(Th)(x) = JAk(x,x')h(x)dx. (6)

If 2(x, x") is a continuous symmetric kernel of T,
which satisfies the following equation

ﬂk(x,x’)h(x)h(x’)dxdx’;0, (7)

AXA
then £ (x, x”) can be expanded in a uniformly con-

vergent series

Fx,x) = a8, (0)g(x),  (8)

where 4,, ¢, and n, are the positive eigenvalues,
eigenfunctions and the number of the positive eigen-
values, respectively.

The kernel function plays an important role in
the SVR. The selection of the kernel function has
great effect on the precision of the prediction. In the
next section the kernel function is modified by using
the method of conformal mapping, which makes the
kernel function data-dependent and is desired to im-
prove the effect of the prediction to a given problem.

2 Data-dependent kernel

In the traditional SVR, there are no theories
concerning how to choose good kernel functions in a

[11’12], while some time series,

data-dependent way
such as financial time series etc. are inherently noisy,
non-stationary and deterministically chaotic. In order
to improve the precision of forecasting, it is necessary
to redefine the kernel function using the given data.
In this section, the kernel is modified, based on the

method of information geometry[m, in a data-depen-
dent way in order to improve the prediction ability for

highly noisy data.

From the point of geometry, nonlinear mapping
@ (x) defines an embedding of input space S into
feature space F as a curved submanifold. Generally,
in the SVR, F is a reproducing kernel Hilbert space
(RKHS) which is a subspace of Hilbert space. So a
Riemannian metric G;, (x) can be induced in the in-
put space S, and the Riemannian metric can be ex-
pressed in the closed form in terms of the kernel

2 2

G;(x) = &ax,k(x,x') =y (9)
7

In this paper, Gaussian RBF kernel is used
E(x,x") = exp(— |l x — x" [1?/24%), (10)

where ¢ is a given parameter.

In this case, the Riemannian metric is

Gi](x) = 61‘,‘/0'2, (11)
where
1, 1=y,
Oy = 0, i#j.

A conformal mapping is introduced to the kernel
functions and the new kernel function is taken as
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k(x,x) = D(x)D(x )k(x,x"). (12)

From Eq. (9), the Riemannian metric can be

rewritten as

> _aD(x) aD(x)
Gylx) =75, ax,

+ [D(x) PG (x).
(13)

Based on the above discussion, a method to im-
prove the precision of the forecasting is proposed un-
der the condition of enlarging the area around the key
data points whereas keeping angles unchanged in the
whole space and therefore won’t affect much the spa-
tial relationship between the data points. The prob-
lem 1s how to select the key data points and the num-
ber of the key data points. The optimal partition al-
gorithm (OPA) is proved to be a novel and effective
method in dealing with stock price time series!'*.
Therefore, the OPA is used here and the conformal

mapping is taken as
1 l’l1
D(x) = ;ZeXp(— Ix = r 12/, (14)
i=1

where m, r, and r; are the number of the partition-
ing points, the center and the width of the 7th parti-
tion, respectively.

A proof of the new kernel function defined by
using Eqgs. (12) and (14) satisfying Mercer’s condi-
tion will be performed in the following theorem.

Theorem 2. The kernel function % (x, x’) satis-
fies Mercer's condition.

Proof. From Eq. (12), the continuity and sym-
metry of the kernel £(x, x") is obvious. Next, let us
prove the positive semi-definite property of the kernel
k(x,x’). The symbols in Theorem 1 are still used
here. Since D(x) >0, and there exists a positive 3
such that D(x)=>0, we have

J:[/;(x,x')h(x)h(x')dxdxl

A A

= J]D(x)D(x')k(x,x')h(x)h(x')dxdx'

= p? ij(x, x Yh(x)h(x )dxdx’ = 0. (15)
Ata
This completes the proof.

In summary, the training process of the im-
proved method consists of the following three steps:
(1) Determine the number of the partitioning points,
center and width of the partitions using the OPA;
(1) calculate the basic kernel function using Eq.

(10) and modify it using Eqs. (12) and (14);: (iii)
train the SVR using the modified kernel function
kE(x,x").

3 Applications to stock price prediction

In order to examine the effectiveness of the pro-
posed algorithm based on the modified kernel, we ap-
ply it to the stock price forecasting. The data used are
the indexes in the stock exchanges, including the
Standard and Poor’s 500 (S&P 500) index and the
composite index in Shanghai Stock Exchange
(CISSE). The data of S&P 500 and CISSE used in
this paper are those with 353 continuous trading days
from 01/02/2001 and 01/04/1999,

The normalization to the data is performed first. De-

respectively.

note the stock price series as r, (i =1, 2, --+, 353).
Let x,,,= max (1;). Denote the normalized data as
110353

I:(i =1,2,:,353) where 1: =2/ T max -

To the above two groups of data, the numbers of
the input nodes are both taken as 3 in this paper, that
is, a historical lag with order 3 is considered in the
simulation. The number of the output nodes is 1,
that is, a single step prediction is taken. The original
S&P 500 and CISSE data are first formed into 350
input-output data pairs. Then the data are divided in-
to two parts, respectively, to form the training data
set (175) and the test data set (175). The error
function is defined as

E:%Z(d,—yi)z. (16)
=1

There are four parameters needed to be deter-
mined in the improved SVR method. Table 1 shows
the values of the parameters. Table 2, Figs. 1 and 2
show the comparison between the actual and the sim-
ulation values of the prediction on the indexes when
the improved SVR and traditional SVR (simplified as
SVR in the table and figures) are applied to the S&P
500 and CISSE data, respectively. From Table 1 it
can be seen that there is an obvious difference be-
tween the two methods for the training and test preci-
sion. The training errors in S&P 500 data and CISSE
data of the modified method are around 1 and 3 times
less than those of the SVR, respectively. While the
test errors in S&P 500 data and CISSE data of the
modified method are around 3 and 6 times less than
those of the SVR, respectively. This shows the mod-
ified method possesses better performance of general-
ization than the SVR. From Figs. 1 and 2 it can also
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be seen that the forecasting effect of test data is supe-
rior to that of training data both in S&P500 data and
CISSE data,

method can make SVR have a better ability of gener-

showing again that the improved

alization.
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= Prediction of improved method
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Fig. 1.  Fitting results using SVR and improved method for
CISSE.

Table 1. Parameter values and numerical results

Parameters and SVR Improved method
classes of results S&P 500  CISSE S&P 500  CISSE
C 25.0 25.0 25.0 25.0
g 8.0 23.5 8.0 23.5
€ 0.0004 0.04 0.0004 0.04
m Null Null 10 10
Number of SV 97 77 95 78

0.000087  0.0014
0.000671  0.0038

0.000076  0.0005
0.000209  0.0006

Training error

Testing error

105

NeJ
\O

93

Objective value

87
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= Prediction of improved method
75 . . . . .
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Number of data

Fig. 2. Fitting results using SVR and improved method for S&P
500.

In order to further examine the improved
method, we employ four statistical metrics to evaluate
the prediction performance. The four metrics include
weighted directional symmetry (WDS), modified di-

rectional symmetry ( MDS ), normalized mean

squared error ( NMSE) and mean absolute error
(MAE)!). The definitions of these criteria are stat-
ed below. The first two metrics are directional met-
rics which need to be maximized, while the last two
are precision metrics which need to be minimized.
WDS measures both the magnitude of the prediction
error and the direction. It penalizes the errors related
to the incorrectly predicted direction and rewards
those associated with the correctly predicted direc-
tion. The larger the value of WDS is, the better the
forecasting performance is in terms of both magnitude
and direction. MDS takes into consideration all the
correctly predicted directions (upward, downward,
and no change), as well as computer truncation er-
rors. NMSE and MAE are the measures of the devia-
tion between the actual and predicted values. The
smaller the values of NMSE and MAE are, the closer

the predicted time series values are to the actual val-

ues.
The definition of the WDS metric is as follows:
zai t i dz '
WDS = -+ , (17)
Za: Iy, —d; |
i=1
where
{1, if (yi = yi-1)(d; —d;1) =0,
a; .
0, otherwise,
0 = {0, if (y; — yi1)(d, —d;-1) =0,
‘ 1, otherwise.
The MDS is defined as
_100<
MDS = = ;a,—, (18)
where

L, if (y; — yi-)(di —diy) >0
and (| y; = yi-1 1>
and | d; —d;_1 1> u)
or (1 yi =i 1< o
and | d; —d;_1 1< p)),
0, otherwise.
in which p is a small constant related to the numerical
precision in the computation.

The NMPE is defined as

NMSE = #Z(M - d,‘)Z, (19)
n

=1

where § = \/n—l_iz(di — d)?, d is the means of

i=1

td:d .
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The MAE is defined as

MAE=—}1~Zry,-—d,-r. (20)

i=1

Table 2 shows the numerical simulation results
for the S&P 500. From the table it can be seen that
the improved method has smaller NMSE and MAE
but larger WDS and MDS than SVR. The obvious
improvements of the MAE and NMSE in the pro-
posed method for the test data show that the im-
proved method can make SVR have a better ability of

generalization.
Table 2. Comparison of statistical metrics for training and test data
WDS MDS MAE NMSE
Training Test Training Test Training Test Training Test
SVR 1.64 1.12 25.287 32.571 0.008 0.023 0.116 0.795
fmproved g | 39 25.201 33.714 0.007 0.012 0.101 0.248

method

4 Conclusions and discussions

A novel SVR method is presented. It is based on
the modification of the kernel function by using the
conformal mapping in information geometry, which
makes the kernel function data-dependent. When
dealing with regression problems and when data being
highly noisy, the use of support vectors is unfit. In
this paper, the key points in the data are used in the
construction of the conformal mapping instead of sup-
port vectors, which enables the proposed method to
fit the regression problems and the data with high
noise. The effectiveness and generalization ability of
the proposed method are demonstrated using the stock
price forecasting. However, there are still some com-
plicated situations to be considered in the stock pre-
diction, such as multi-step forecasting where the pre-
dicted values are iteratively used as the inputs for the

next forecasting.
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